

MAXIMIZE YOUR PROTECTION **AND SUPPORT**

WITH MINIMAL OBSTRUCTION TO WORKFLOW

KEY BENEFITS

- **Radiation protection**
- **Arm stabilization**
- **Equipment support**

FEATURES

Modular system

Versatile pieces easily installed anywhere around the table

Low-profile design

Adjustable pieces blend seamlessly into existing equipment

Strategic materials

Radiolucent where needed with cutouts to limit scatter

ARMERY SHIELD RADIAL SUPPORT

A) ARMER

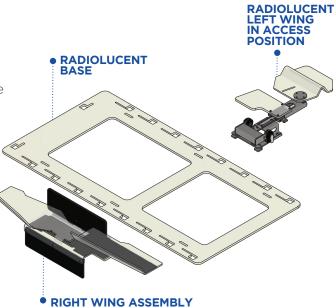
armery.ca

BASE

Universal

• Made-to-order to fit any table dimensions

Simple installation


Solidly fixes to table without hardware

Unobstructive

• Safe patient transfer when pieces uninstalled

Flexible

Multiple mounting points

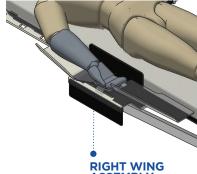
RIGHT

Adjustable

· Adjusts to patient position and arm length

Ergonomic

 \bigoplus


Adjustable contoured form positions patient arm to optimize arterial access

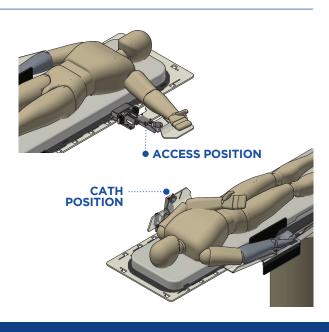
Strategically oriented lead

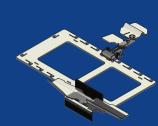
 Closes the radiation window to minimize remaining exposure source

Supportive work bench

Runway supports wires, catheters, and other procedural equipment

RIGHT WING ASSEMBLY


LEFT


Dual-purpose

- Access position
 - Supports abducted left or right arm when obtaining access
- Cath position
 - Locks left arm comfortably in position for left radial approach

Compact

Transforms for cath position to minimize interference

REDUCING RADIATION EXPOSURE

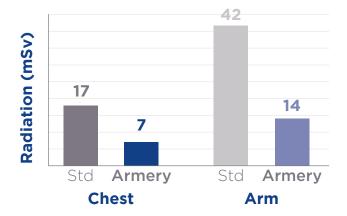
to Operators During Invasive Cardiac Procedures With a Novel Lead-Based Arm Board (RADAR)

Background

- Ionizing radiation exposure during invasive coronary angiography and percutaneous interventions carries potential adverse effects to the operator and patient
- The Armery board was evaluated in a randomized controlled trial to evaluate its ability to reduce radiation exposure to operators in real-world clinical practice

Results

- Baseline clinical and procedural characteristics were similar between the two groups
- 346 patients who underwent 351 procedures (175 with lead-based arm board) were randomized
- There was no difference between groups in air kerma or dose area product
- Compared with standard lead shielding alone, the use of lead-based arm board significationary reduced the radiation dose (see Main Results table) to the primary operator at:


Chest Level 58% reduction;

 $17.3 \pm 17.2 \text{ vs.}$ $7.3 \pm 10.3 \mu \text{SV}$

Forearm Level 65% reduction;

 $42.4 \pm 48.9 \text{ vs.}$ $14.8 \pm 19.1 \,\mu\text{SV}$

info@armery.ca armery.ca

Procedural Characteristics

Procedure	Arm Board (n=175)	Control (n=176)	P Value
Diagnostic	113 (64.6)	103 (58.5)	0.27
PCI	62 (35.4)	73 (41.5)	0.27
Access			
R Radial	157(89.7)	146 (83.0)	0.09
L Radial	9 (5.1)	19 (10.8)	0.07
Femoral	8 (4.6)	12 (6.8)	0.49

Procedure Radiation Parameters and Characteristics

	Arm Board (n=175)	Control (n=176)	P Value
Cine — 15 frames/sec	157 (91)	158 (90)	0.76
Cine — 30 frames/sec	16 (9)	18 (10)	0.76
Use of Pelvic Lead Shielding	67 (39)	73 (42)	0.54
Fluoroscopy Time (sec)	489 ± 584	513 ± 444	0.65
No. of Cine Acquisitions	16.9 ± 13.2	17.6 ± 12.0	0.61

Main Results

	Arm Board (n=176)	Control (n=175)	P Value			
Primary Outcomes — Operator Radiation Dose						
Chest Level (µ5v)	7.3 ± 10.3	17.3 ± 17.2	<0.001			
Forearm Level (µ5v)	14.8 ± 19.1	42.4 ± 48.9	<0.001			
Secondary Outcomes — Patient Dose						
Secondary Ou	tcomes — Pat	ient Dose				
Secondary Ou DAP (Gy*cm²)	tcomes — Pat 54.7 ± 45.9	59.4 ± 41.6	0.32			
-			0.32			

Conclusions

Adding a lead-based arm board is associated with a significant reduction in radiation dose to the primary operator when compared to the standard lead shielding and without increasing the dose to the patient.

Division of Cardiology, Department of Medicine, London Health Sciences Center, London Ontario and University of Western Ontario, Canada

T Choudhury MBBS, S Hayman MBBS, A McLellan MRT(R), R Bagur MD PhD, S Lavi MD, A Solomonica MD, Z Israeli MD, A Yadegari MD, T McPherson MD, P Teefy MD, P Garg MBBS MSc